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Directional Autocorrelation and the Diffusional Tortuosity of 
Capillary Porous Media 

The estimation of effective diffusivities 
and flux rates in porous materials such as 
catalyst particles and coal chars is a prob- 
lem of fundamental importance in chemical 
reaction engineering, and much attention 
has been devoted to this issue. Several 
models are now available and most of them 
favor the visualization of the porous me- 
dium as a random network of capillaries re- 
quiring the use of a tortuosity factor 
to account for the effects of capillary 
orientation. Thus, Johnson and Stewart (I) 
solve for the flux in a single capillary of 
arbitrary radius and having the same length 
as the pellet, and integrate the result over 
the pore size distribution. A tortuosity fac- 
tor is then introduced. Satterfield (2) in- 
stead proposes a pore diffusivity based on 
an average radius, and this is then divided 
by the tortuosity. Feng and Stewart (3), 
and more recently Wang and Smith (4), de- 
fine a pore volume averaged diffusivity 

wheref(r) dr is the void fraction of pores in 
the radius interval [r, r + dr]. The effective 
ditfusivity is then obtained from 

,/@, 
7 

where T is the tortuosity factor. Another 
model (5) called the dusty gas model uti- 
lizes even more parameters and is less pop- 
ular. 

Among the theoretical calculations of the 
tortuosity factor the most widely accepted 
(2, 6-8) is that of Stewart and co-workers 
(I, 3) which predicts a value of 7 = 3, as- 

suming pores with random orientations. 
Experimental evidence, however, appears 
to indicate values of T larger than 3, usually 
by a significant factor. In addition, the val- 
ues of 7 estimated from diffusion measure- 
ments generally depend on which of the 
aforementioned models is used to fit the 
data, even for the same experiment (4, 9). 
Values of 7 of about 4.4 have been reported 
by Horak and Schneider (9), and ranging 
from 3 to 11 by Satterfield and Cadle (ZO), 
using the Johnson and Stewart (I) ap- 
proach. Most recently Wang and Smith (4) 
tested several methods and found consis- 
tent values only when a volume averaged 
diffusivity as defined by Eq. (1) was used. 
In their experiments 7 varied only between 
6 and 8 for two catalysts under varying con- 
ditions of temperature. Wang and Smith (4) 
also reported unreasonably low and varying 
values of 7 when the diffusivity was instead 
based on an averaged radius (2&/S). Similar 
results were also observed by Horak and 
Schneider (9). In other work Amberg and 
Echigoya (II) reported values of 7 also in 
the range of 6 to 8 from experiments which 
were fortuitously in the bulk diffusion re- 
gime. Thus, their results for T are not de- 
pendent on an estimation of a mean pore 
diffusivity. More recently McGreavy and 
Siddiqui (22) also find values of 7 in the 
same range. 

One of the key reasons used (2, 13, 14) 
to justify values of 7 larger than the ex- 
pected value of 3 is the possibility of pore 
constrictions which have been shown (13, 
Z4) to have an adverse effect on the flux 
rate in individual pores. The extent of this 
effect depends largely on the relative size 
and volume of the constriction. In con- 
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FIG. 1. Intersection of randomly oriented capillar- 
ies. 

netted pore structures with a substantial 
pore volume in the Knudsen regime, as oc- 
curs in most catalyst particles, the extent of 
this effect may, however, be less than that 
predicted; for during mercury porosimetry 
regions between constrictions are pene- 
trated only at a pressure corresponding to 
the smaller size of the constriction and 
therefore ascribed a smaller than actual ra- 
dius. Thus, upon taking the pore volume 
average diffusivity, as in Eq. (l), the lower- 
ing of the effective diffusivity may be es- 
sentially accounted for. This suggests the 
possibility that other factors may also play 
a role in the underlying reasons for the high 
experimental tortuosity estimates, besides 
simple deviation from the ideal of cylindri- 
cal capillaries. This observation is also sup- 
ported by the results of Pate1 and Butt (15) 
who introduced various converging-di- 
verging capillary shapes into their pore 
structure models but still report fitted tortu- 
osities of about 6 and larger. 

It is the purpose of this note to bring at- 
tention to the presence of a hitherto unrec- 
ognized autocorrelation effect during diffu- 
sion in capillary structures, and which can 
account for values of 7 much larger than 
otherwise expected, under conditions of 
bulk as well as Knudsen diffusion. This 
autocorrelation effect is most readily evi- 
denced if we admit that molecular transport 
in a capillary network must comprise of a 
sequence of individual steps each of which 
corresponds to the successful navigation of 
a complete pore segment. Since the second- 
order differential equation of diffusion (es- 
sentially a continuum approximation) is 
used to model the overall process, the indi- 
vidual pore lengths are considered negligi- 

ble in comparison to the pellet size; and in 
the context of the random walk basis of the 
diffusion equation, successive pore seg- 
ments become the individual steps of the 
“random walk.” If successive steps are 
truly random, then indeed 

7-l = (COG T9) (3) 

1 =- 
3’ 

where 6 is the angle between the pore axis 
and a reference laboratory axis. A closer 
examination, however, reveals that succes- 
sive steps are not necessarily random, for 
shortly after traversing a complete pore 
segment and arriving at an intersection the 
diffusing molecule can, as a result of colli- 
sions, reverse direction. In such a case the 
next full pore segment effected may be pre- 
cisely the last one, and this no longer has a 
random direction. Thus, there is a correla- 
tion among successive steps and some ac- 
count must be made of this effect in the 
above calculation of the tortuosity factor. 

As an illustration consider the events oc- 
curring at a pore junction such as that in 
Fig. 1, which depicts the intersection of 
three capillaries all of which are assumed to 
be oriented randomly, and in directions un- 
correlated with each other. A molecule 
upon arriving at this junction after having 
diffused through, say, capillary A may ini- 
tially have a velocity vector that has a 
higher likelihood of carrying it into pores B 
or C. However, since the distance traveled 
between collisions (either with the pore 
walls or with other molecules) is small com- 
pared to the length of the individual pore 
segments, as is usually the case (for this is 
the fundamental assumption behind the use 
of a diffusion equation in individual capil- 
laries when calculating micropore or mac- 
ropore effectiveness factors (7, 16, 17)), 
the molecule is likely to suffer many colli- 
sions and make several excursions back to 
the junction, and possibly into pore A, be- 
fore ultimately, in its meanderings, exiting 
from the end of either pores A, B, or C onto 
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the next intersection, and so on. The point 
of ultimate exit is therefore largely uncorre- 
lated with the velocity vector on initially 
arriving at the junction of A, B, and C; and 
in the simplest case, if all three pores have 
the same radius and length, the probability 
is f that the molecule exits from the end of 
capillary A, back to the intersection it had 
previously visited. Thus, upon successfully 
completing a given step, the probability is 
only Q that the next step is random. These 
probabilities will of course change if the 
number of pores meeting at an intersection 
is different from three as considered in this 
illustration. 

A somewhat analogous situation, first de- 
scribed by Bardeen and Herring (28), exists 
in the migration of atoms in crystals, 
wherein a tracer atom upon making a jump 
in a lattice creates a vacancy at the site just 
left. It may therefore make its next jump 
back to the previous site instead of making 
a jump according to an isotropic set of 
probabilities. Various methods have been 
employed to calculate the correlation factor 
by which the diffusion coefficient is modi- 
fied for the different lattice types, and many 
of these are reviewed in Manning (19) and 
Le Claire (20, 21). In general the problem is 
reduced to one of calculating the factor 

(4) 

where 6, is the angle between successive 
jump directions, and (cos 9,) the expected 
value of its cosine. The resulting value of 
(cos2 0) is then modified to F/3 in calculat- 
ing the diffusion coefficient. The same cor- 
rections carry over identically to our capil- 
lary network diffusion problem, and the 
tortuosity should therefore be modified to 

where F is given as in Eq. (4), with 61 being 
treated as the angle between successive 
pores traversed. If successive steps are 
truly randomly oriented then 

= 0. 

Thus, F = 1 and r = 3. This, as shown 
above, is, however, not the true situation. 

It is readily evident that, in general, for 
capillary networks the value of F will de- 
pend on the lengths and diameters, as well 
as total number, of the pores meeting at a 
junction. We consider here only the sim- 
plest case with all pores of the same length 
and diameter. Consider first intersections 
such as that in Fig. 1, but involving N 
pores, with no correlation among their ori- 
entations. The probability is then l/N that 
the molecule executes a step identical to 
the previous one, and this event has 61 = 
180”, i.e., cos & = - 1. If the molecule in- 
stead leaves by any of the other pores, (cos 
&) = 0 since they are randomly oriented. 
Thus, taking the overall average, (cos &> = 
-l/N and 

(6) 

Thus, only the N --, 03, i.e., we have a 
“thoroughly” interconnected structure, is r 
= 3. This, however, is clearly unrealistic 
and, although N may vary among the junc- 
tions in the pore structure, N = 4, on the 
average, is probably the most reasonable 
choice. This gives r = 5, a result in much 
better agreement with the experimental ob- 
servations discussed previously. For N = 
2, r = 9, while for N = 6, r = 4.2. Most 
experimental results appear to fall between 
these values. For N + 1, T -+ 03 and mole- 
cules everywhere are trapped, as expected, 
for it may be recognized that this situation 
corresponds to isolated pores. 

One may also consider intersections such 
as that shown in Fig. 2, in which a continu- 
ous pore is intersected by a randomly ori- 
ented pore. It is evident that for molecules 
arriving at the junction from either branch 
of the continuous pore (cos Si) = 0, while 
for molecules arriving via the intersecting 
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FIG. 2. Intersection of a continuous pore with a ran- 
domly oriented capillary. 

pore (cos 8,) = -4. For pores of uniform 
length and diameter the probability is 0.5 
that a molecule traveling in a pore encoun- 
ters an intersection in which the capillary 
ends, and consequently, taking the overall 
average, (cos Sr) = -6, giving Q- = 4.2 upon 
application of Eqs. (4) and (5). Alterna- 
tively, if all intersections are of the 
crosslinked type as in Fig. 3, then it is read- 
ily calculated that 7 = 3. This situation is, 
however, a less likely event than those de- 
picted in Figs. 1 and 2, particularly in view 
of the experimental findings discussed 
above. 

Although we have calculated the above 
tortuosity factors for uniform size pore sys- 
tems the full estimation of the effective dif- 
fusivity must also involve the correlation 
among the size parameters, as well as the 
possible variation in number, of the pores 
meeting at an intersection; a level of elabo- 
ration not readily possible by the use of Eq. 
(4) alone. The full accounting of these fac- 
tors will also essentially subsume the effect 
of pore constrictions since the latter can be 
effectively viewed as smaller pores inter- 
secting with larger ones. A detailed statisti- 
cal framework for performing such calcula- 
tions based on measurable pore volume 
distribution data is currently being devel- 
oped in this laboratory and will be reported 
in a future publication. In this communica- 
tion we have indicated this very interesting 

FIG. 3. Intersection in a crosslinked network. 

effect and provided a simple method for es- 
timating its approximate magnitude. Fi- 
nally, we note that this autocorrelation ef- 
fect is not restricted to capillary networks 
alone, but is of general consequence for all 
interconnected structures that may be pos- 
tulated to model the porous medium. Re- 
gardless of the nature of the structure a dif- 
fusing molecule is confined by the internal 
surfaces and, as a result, its path is never 
truly random, but probabilistically corre- 
lated with its past trajectory, because of the 
possibility of reversing direction. 

APPENDIX: NOMENCLATURE 

D(r) diffusivity in pores of radius r 
(D) volume averaged pore diffusivity 
D, effective diffusivity in pellet 
E porosity 
f(r) pore volume distribution 
F correlation factor defined in Eq. (4) 
N number of pores meeting at intersec- 

tion 
r pore radius 
S surface area per unit volume 
7 tortuosity 
8 angle between pore axis and reference 

axis 
6, angle between successive steps. 
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